33 research outputs found

    A Metabolic Dependency for Host Isoprenoids in the Obligate Intracellular Pathogen Rickettsia parkeri Underlies a Sensitivity to the Statin Class of Host-Targeted Therapeutics.

    Get PDF
    Gram-negative bacteria in the order Rickettsiales have an obligate intracellular growth requirement, and some species cause human diseases such as typhus and spotted fever. The bacteria have evolved a dependence on essential nutrients and metabolites from the host cell as a consequence of extensive genome reduction. However, it remains largely unknown which nutrients they acquire and whether their metabolic dependency can be exploited therapeutically. Here, we describe a genetic rewiring of bacterial isoprenoid biosynthetic pathways in the Rickettsiales that has resulted from reductive genome evolution. Furthermore, we investigated whether the spotted fever group Rickettsia species Rickettsia parkeri scavenges isoprenoid precursors directly from the host. Using targeted mass spectrometry, we found that infection caused decreases in host isoprenoid products and concomitant increases in bacterial isoprenoid metabolites. Additionally, we report that treatment of infected cells with statins, which inhibit host isoprenoid synthesis, prohibited bacterial growth. We show that growth inhibition correlates with changes in bacterial size and shape that mimic those caused by antibiotics that inhibit peptidoglycan biosynthesis, suggesting that statins lead to an inhibition of cell wall synthesis. Altogether, our results describe a potential Achilles' heel of obligate intracellular pathogens that can potentially be exploited with host-targeted therapeutics that interfere with metabolic pathways required for bacterial growth.IMPORTANCE Obligate intracellular pathogens, which include viruses as well as certain bacteria and eukaryotes, are a subset of infectious microbes that are metabolically dependent on and unable to grow outside an infected host cell because they have lost or lack essential biosynthetic pathways. In this study, we describe a metabolic dependency of the bacterial pathogen Rickettsia parkeri on host isoprenoid molecules that are used in the biosynthesis of downstream products, including cholesterol, steroid hormones, and heme. Bacteria make products from isoprenoids, such as an essential lipid carrier for making the bacterial cell wall. We show that bacterial metabolic dependency can represent a potential Achilles' heel and that inhibiting host isoprenoid biosynthesis with the FDA-approved statin class of drugs inhibits bacterial growth by interfering with the integrity of the cell wall. This work supports the potential to treat infections by obligate intracellular pathogens through inhibition of host biosynthetic pathways that are susceptible to parasitism

    Covalent targeting of the vacuolar H+-ATPase activates autophagy via mTORC1 inhibition.

    Get PDF
    Autophagy is a lysosomal degradation pathway that eliminates aggregated proteins and damaged organelles to maintain cellular homeostasis. A major route for activating autophagy involves inhibition of the mTORC1 kinase, but current mTORC1-targeting compounds do not allow complete and selective mTORC1 blockade. Here, we have coupled screening of a covalent ligand library with activity-based protein profiling to discover EN6, a small-molecule in vivo activator of autophagy that covalently targets cysteine 277 in the ATP6V1A subunit of the lysosomal v-ATPase, which activates mTORC1 via the Rag guanosine triphosphatases. EN6-mediated ATP6V1A modification decouples the v-ATPase from the Rags, leading to inhibition of mTORC1 signaling, increased lysosomal acidification and activation of autophagy. Consistently, EN6 clears TDP-43 aggregates, a causative agent in frontotemporal dementia, in a lysosome-dependent manner. Our results provide insight into how the v-ATPase regulates mTORC1, and reveal a unique approach for enhancing cellular clearance based on covalent inhibition of lysosomal mTORC1 signaling

    Inhibition of Monoacylglycerol Lipase Activity Decreases Glucose-Stimulated Insulin Secretion in INS-1 (832/13) Cells and Rat Islets.

    No full text
    Lipid signals derived from lipolysis and membrane phospholipids play an important role in glucose-stimulated insulin secretion (GSIS), though the exact secondary signals remain unclear. Previous reports have documented a stimulatory role of exogenously added mono-acyl-glycerol (MAG) on insulin secretion from cultured β-cells and islets. In this report we have determined effects of increasing intracellular MAG in the β-cell by inhibiting mono-acyl-glycerol lipase (MGL) activity, which catalyzes the final step in triacylglycerol breakdown, namely the hydrolysis of MAG to glycerol and free fatty acid (FA). To determine the role of MGL in GSIS, we used three different pharmacological agents (JZL184, MJN110 and URB602). All three inhibited GSIS and depolarization-induced insulin secretion in INS-1 (832/13). JZL184 significantly inhibited both GSIS and depolarization-induced insulin secretion in rat islets. JZL184 significantly decreased lipolysis and increased both mono- and diacyglycerol species in INS-1 cells. Analysis of the kinetics of GSIS showed that inhibition was greater during the sustained phase of secretion. A similar pattern was observed in the response of Ca2+ to glucose and depolarization but to a lesser degree suggesting that altered Ca2+ handling alone could not explain the reduction in insulin secretion. In addition, a significant reduction in long chain-CoA (LC-CoA) was observed in INS-1 cells at both basal and stimulatory glucose following inhibition of MGL. Our data implicate an important role for MGL in insulin secretion

    JZL184 reduced sustained insulin secretion during glucose stimulation in whole isolated rat islets.

    No full text
    <p>Islets were perifused with basal glucose (3 mM) KRB buffer for approximately 10 minutes followed by a 30-minute perifusion with 15 mM glucose with or without 10 μM JZL184. At 40 minutes the islets were perifused with 15 mM glucose KRB with 0.4 mM DZ and 30 mM KCl with or without 10 μM JZL184. n = 3 independent experiments from different islet isolations. Error bars represent S.E. and are displayed every 4<sup>th</sup> data point for clarity. All points after 23.1 minutes were significantly different (<i>p</i><0.05).</p

    4β-Hydroxycholesterol is a prolipogenic factor that promotes SREBP1c expression and activity through the liver X receptor

    Get PDF
    Oxysterols are oxidized derivatives of cholesterol that play regulatory roles in lipid biosynthesis and homeostasis. How oxysterol signaling coordinates different lipid classes such as sterols and triglycerides remains incompletely understood. Here, we show that 4β-hydroxycholesterol (HC) (4β-HC), a liver and serum abundant oxysterol of poorly defined functions, is a potent and selective inducer of the master lipogenic transcription factor, SREBP1c, but not the related steroidogenic transcription factor SREBP2. By correlating tracing of lipid synthesis with lipogenic gene expression profiling, we found that 4β-HC acts as a putative agonist for the liver X receptor (LXR), a sterol sensor and transcriptional regulator previously linked to SREBP1c activation. Unique among the oxysterol agonists of the LXR, 4β-HC induced expression of the lipogenic program downstream of SREBP1c and triggered de novo lipogenesis both in primary hepatocytes and in the mouse liver. In addition, 4β-HC acted in parallel to insulin-PI3K-dependent signaling to stimulate triglyceride synthesis and lipid-droplet accumulation. Thus, 4β-HC is an endogenous regulator of de novo lipogenesis through the LXR-SREBP1c axis

    Significant reduction in total LC-CoA following acute treatment of INS-1 cells with JZL184.

    No full text
    <p>Cells were exposed to JZL184 at both basal and stimulatory glucose and LC-CoA was measured as described in the methods (n = 3). Error bars represent S.E. from independent experiments (*, <i>p</i><0.05).</p

    Exposure to JZL184 reduced glycerol release and increased MAG species in INS-1 cells.

    No full text
    <p>(A) Incubation with 10 μM JZL184 time-dependently reduced glycerol release at both basal and stimulatory glucose (n = 6). (B) Acute exposure to JZL184 for 30 minutes increased total MAG species at both basal and stimulatory glucose. (C) Quantitation of total MAGs from 4 experiments. Error bars represent S.E. from independent experiments (*, <i>p</i><0.05).</p
    corecore